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1. Let X be a complex normed linear space. Suppose L(X) the space of bounded linear operators with
the usual norm. is a Banach space. Show that X is a Banach space.

Solution: Pick a Cauchy sequence in X, say {xn}n≥1. Given x ∈ X, define the mapping fx :
X → X by fx(y) = φ(y)x, where φ ∈ X∗ is a fixed non zero functional. Let y0 ∈ X be such that
φ(y0) = 1. Note that ||fx|| ≤ ||φ||||x||, so fx is bounded and also it is easy to see that fx is linear.
Therefore, we have {fxn}n≥1 is Cauchy sequence in B(X) if {xn} is Cauchy in X. Let f be such
that fxn → f then,

f(y0) = lim
n→∞

fxn
(y0) = lim

n→∞
φ(y0)xn = lim

n→∞
xn.

�

2. Let X be a normed linear space. Let {xn} ⊂ X be a sequence such that, the closed convex hull
K = CO({xn}) is compact set. Let x0 ∈ X and let µ =

∑
1
2n δ(xn). Suppose x∗(x0) =

∫
K
x∗dµ for

all x∗ ∈ X∗. Show that x0 ∈ K.

Solution: We have,
∫
K
x∗dµ =

∑
n

1
2n

∫
x∗dδ(xn) =

∑
n

1
2nx
∗(xn).

x∗(x0) =
∑
n

1
2nx
∗(xn) = x∗

(∑
n

1
2nxn

)
.

x0 =
∑
n

1
2nxn = lim

n

n∑
k=1

1
2k
xk = lim

n

[
n∑
k=1

1
2k
xk + 1

2nxn

]
Therefore x0 ∈ K.

�

3. Let X be a locally convex topological vector space. Let F ⊂ X∗ be a finite dimensional subspace.
Show that there is a closed subspace Y ⊂ X such that Y ⊥ = F .

Solution: Since F is a finite dimensional subspace X∗. Let {f1, f2, ...fn} is a basis of F . We claim
that Y = Ker(f1) ∩Ker(f2) ∩ ... ∩Ker(fn). Observe that fi(Y ) = 0 for all i = 1, 2, ..., n, therefore
F ⊆ Y ⊥. Using the Lemma 3.9 (page- 63 to 64) from the book Walter Rudin, Functional Analysis.
We can see that if f ∈ Y ⊥ then f can be written as linear combination if fi’s, therefore f belongs
to F , Y ⊥ ⊆ F . Hence Y ⊥ = F .

�

4. Let X,Y be a LCTVS spaces. Let T : X → Y be an isomorphism. Suppose X∗ and Y ∗ are equipped
with the weak*-topology. Show that T ∗ : Y ∗ → X∗ is an isomorphism.

Solution: Let T ∗ : Y ∗ → X∗ is defined by T ∗(y∗)(x) = y∗(T (x)).
We show that T ∗ is linear, let y∗1 , y

∗
2 ∈ Y ∗, T ∗(y∗1 +y∗2)(x) = T ∗((y1 +y2)∗)(x) = (y1 +y2)∗(T (x)) =

(y∗1 + y∗2)(T (x)) = y∗1(T (x)) + y∗2(T (x)) = T ∗(y∗1)(x) + T ∗(y∗2)(x). Let c be a scalar and y∗ ∈ Y ∗,
T ∗(cy∗)(x) = T ∗((cy)∗)(x) = (cy)∗(T (x)) = cy∗(T (x)) = cT ∗(cy∗).
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We show that T ∗ is one to one and onto, T ∗(y∗1)(x) = T ∗(y∗2)(x), y∗1(T (x)) = y∗2(T (x)) ∀x, thus
y∗1 = y∗2 . Therefore T ∗ is one to one. For x∗ ∈ X∗, take y∗ = x∗ ◦ T−1, then T ∗(y∗) = x∗, hence T
is onto.
We now show that T ∗ and (T ∗)−1 are continuous. T ∗(y∗) = y∗ ◦ T , Since T is continuous therefore
T ∗ is continuous. We know (T ∗)−1 = (T−1)∗, the continuity of T−1 will imply that the continuity
of (T ∗)−1. �

5. Give examples of two normed linear spaces, and a continuous linear map T between them such that
T has closed range but the range of T ∗ is not closed.

Solution: Let c00 be space of all sequences which have only finitely many non zero elements with
sup norm. Let T : c00 → c00 defined by T ((xn)) = (xn

n ). We can easily see that range of T is
closed. We know that c∗00 = l1. T ∗ : l1 → l1 is T ∗((yn)) = (ynn ). Let Zm = (1, 12 , ...,

1
m , 0, 0, ....),

Zm ∈ l1. T ∗(ym) = (1, 1
22 , ...,

1
m2 , 0, 0, ....). Taking limit m → ∞ then (1, 1

22 , ...,
1
m2 , ....) ∈ l1. We

have T (1, 12 , ...,
1
m , ....) = (1, 1

22 , ...,
1
m2 , ....) but (1, 12 , ...,

1
m , ....) not belong to l1. �

6. Show that the space of regular Borel probability measures on [0, 1], equipped with the weak*-topology
is a metrizable space.

Solution: Let M([0, 1]) be the space of regular Borel probability measures on [0, 1]. Since [0, 1]
is compact, we have C[0, 1] is a separable Banach space. Denote the closed unit ball in C([0, 1])∗

by B. By Banach-Alaogu theorem B is weak*-compact, using Theorem 3.16 (page 70) in the book
Walter Rudin, Functional Analysis B is metrizable. Let map ∧ : M([0, 1]) → C[0, 1]∗ defined by
∧µf :

∫
[0,1]

fdµ. ∧M([0, 1]) is a closed subset of B, hence ∧M([0, 1]) is a weak*-compact subset of

C([0, 1])∗. Using Theorem 3.16 (page 70) in the book Walter Rudin, Functional Analysis ∧M([0, 1])
is metrizable. Hence space of regular Borel probability measures on [0, 1], equipped with the weak*-
topology is a metrizable space. �

7. Let D = {z : |z| < 1} be the open unit disk. Let A(D) denote the space of analytic functions
on D with family of semi-norms, pz(a) = |a(z)| for z ∈ D and a ∈ D. Let F = {p ∈ A(D) :
p is a polynomial of degree at most n}. Show that A(D) = F

⊕
Y (direct sum) for some closed

subspace Y ⊂ A(D). Let P : A(D)→ Y be the canonical projection. Show that P is not a compact
operator.

Solution: Since A(D) is locally convex topological vector space and dim F = n+1 <∞. Using the
Lemma 4.21(a), page-106 from the book Walter Rudin, Functional Analysis, F is complemented in
A(D). Therefore there exist a closed subspace Y ⊂ A(D) such that A(D) = F

⊕
Y .

Suppose P : A(D)→ Y is compact, we have range of P is closed. Using the Thorem 4.18(b) in the
book Walter Rudin, Functional Analysis, thus dim range of P is finite. Which is a contradiction.
Therefore P is not a operator. �

8. Let X be a normed linear space. State and prove the Banach-Alaogu theorem.

Solution: We can find the Statement and proof in the book Walter Rudin, Functional Analysis,
Theorem 3.15, page-68.

�

9. Let T : l2 → l2 be defined by T ({αn}) = {αn

n }. Show that T is a compact operator.
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Solution: Define TN ({αn}) = (α1,
α2

2 ,
α3

3 , ...
αN

N , 0, 0, 0.....), since range of TN is finite dimensional,
therefore TN is a compact operator. For {αn} ∈ l2,

||TN ({αn})− T ({αn})||2 =

(∑
n>N

∣∣∣αn
n

∣∣∣2) 1
2

≤
(

sup
n>N

∣∣∣∣ 1n
∣∣∣∣)
(∑
n>N

|αn|2
) 1

2

≤
(

sup
n>N

∣∣∣∣ 1n
∣∣∣∣) ||{αn}||2

Therefore,

||TN ({αn})− T ({αn})||2 ≤ sup
n>N

∣∣∣∣ 1n
∣∣∣∣

Since 1
n → 0, it follows that ||TN ({αn}) − T ({αn})||2 → 0. Since set of compact operators form a

closed subspace. Hence T is a compact operator.

�

10. Let T ∈ L(X) be such that T ∗ maps extreme points of the unit ball of X∗ to extreme points of the
unit ball of X∗. Show that T is an extreme point of the unit ball of L(X).

Solution: Let x belongs to unit ball of X, We have

||Tx|| = ||y∗(Tx)||,where y∗ belongs to the unit ball of X∗

= ||y∗(Tx)||,where y∗ belongs to the extreme point of the unit ball of X∗

= ||T ∗(y∗)(x)|| ≤ 1.

Therefore ||T || ≤ 1.

Now we prove that T is an extreme point. Let T = λT1 + (1 − λ)T2, where 0 < λ < 1, T1 and
T2 belongs to the unit ball of L(X). Let y∗ belong to the extreme point of the unit ball of X∗,
y∗(T ) = λy∗(T1)+(1−λ)y∗(T2), T ∗(y∗) = λT ∗1 (y∗)+(1−λ)T ∗2 (y∗). Since T ∗ maps extreme points
of the unit ball of X∗ to the extreme points of the unit ball of X∗ we have,

T ∗(y∗) = T ∗1 (y∗) = T ∗2 (y∗).

The above equation is true for every element in the unit ball of X∗, therefore for every element of
X∗. Hence y∗(T ) = y∗(T1) = y∗(T2) for every y∗ ∈ X∗. This implies that T = T1 = T2.

�
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