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1. Let X be a complex normed linear space. Suppose L(X) the space of bounded linear operators with
the usual norm. is a Banach space. Show that X is a Banach space.

Solution: Pick a Cauchy sequence in X, say {z,}n>1. Given z € X, define the mapping f, :
X — X by f.(y) = ¢(y)x, where ¢ € X* is a fixed non zero functional. Let yo € X be such that
d(yo) = 1. Note that || fz|| < [|#]|]|x|], so fz is bounded and also it is easy to see that f, is linear.
Therefore, we have {fz, }n>1 is Cauchy sequence in B(X) if {z,} is Cauchy in X. Let f be such
that fy, — f then,
f(yo) = lim f (yo) = lim ¢(yo)x, = lim a,.
n—oo n—oo n—oo

]

2. Let X be a normed linear space. Let {x,} C X be a sequence such that, the closed convexr hull
K = CO({zy}) is compact set. Let g € X and let p =Y 5=6(x,). Suppose x*(xq) = [, x*dpu for
all * € X*. Show that xg € K.

Solution: We have, [, z*du = Z - [x*dé(xn) =Y QL (@)

n n
1 . 1 . 1 1
Top = 5w Tn = lim > SETE = 117rln { > FTE + an]
n k=1

Therefore zg € K.
O

3. Let X be a locally convex topological vector space. Let F C X* be a finite dimensional subspace.
Show that there is a closed subspace Y C X such that Y+ = F.

Solution: Since F' is a finite dimensional subspace X*. Let {f1, fa,...fn} is a basis of F. We claim
that Y = Ker(f1) N Ker(f2) N...NKer(f,). Observe that f;(Y) =0 for all i = 1,2, ..., n, therefore
F C Y+t Using the Lemma 3.9 (page- 63 to 64) from the book Walter Rudin, Functional Analysis.
We can see that if f € Y+ then f can be written as linear combination if f;’s, therefore f belongs
toF, Yt CF. Hence Y+ = F.

O

4. Let X,Y be a LCTVS spaces. LetT : X —'Y be an isomorphism. Suppose X* and Y™ are equipped
with the weak*-topology. Show that T* : Y* — X* is an isomorphism.

We show that T* is linear, let y7,v5 € Y™, T*(y] +v3 )(x) =T*((y1+y2)*)(z) = (y1 +y2)*(T(x)) =
(Wi +y3)(T(z)) = yi(T(2)) + y3(T'(x)) = T*(y1)(9€) T*(y3)(x). Let ¢ be a scalar and y* € Y™,
T (cy*)(z) = T*((cy)")(x) = (ey)"(T(z)) = ey™(T'(x)) = T (cy™).

Solution: Let T* : Y* — X* is defined by T*(y*)(z) = y*(T'(x)).
“((
5)



We show that T* is one to one and onto, T*(y7)(x) = T*(y3)(x), yi(T(x)) = y5(T(z)) Va, thus
vy} = y5. Therefore T* is one to one. For 2* € X*, take y* = x* o T~1, then T*(y*) = x*, hence T
is onto.

We now show that 7% and (T*)~! are continuous. T*(y*) = y* o T, Since T is continuous therefore
T* is continuous. We know (T*)~! = (T~1)*, the continuity of 7! will imply that the continuity
of (T*)~ L. O

5. Give examples of two normed linear spaces, and a continuous linear map T between them such that
T has closed range but the range of T is not closed.

Solution: Let cyg be space of all sequences which have only finitely many non zero elements with
sup norm. Let T : coo — coo defined by T'((z,)) = (%=). We can easily see that range of T is
closed. We know that ¢y = li. T* : Iy — Iy is T*((yn)) = (£). Let 2™ = (1,4,...,1,0,0,....),

< m

zZm e ly. T*(y™) = (1, 2%, cey #,0,0, ....). Taking limit m — oo then (1, 2%,...7 #,) €l;. We
have T'(1, %7 . %, w) = (1, 2%7 . #, ....) but (1, %, - %, ....) not belong to ;. O

6. Show that the space of regular Borel probability measures on [0,1], equipped with the weak*-topology
is a metrizable space.

Solution: Let M ([0,1]) be the space of regular Borel probability measures on [0,1]. Since [0, 1]
is compact, we have C[0,1] is a separable Banach space. Denote the closed unit ball in C(]0, 1])*
by B. By Banach-Alaogu theorem B is weak*-compact, using Theorem 3.16 (page 70) in the book
Walter Rudin, Functional Analysis B is metrizable. Let map A : M([0,1]) — C[0, 1]* defined by
Apf e f[O,l] fdu. AM([0,1]) is a closed subset of B, hence AM([0,1]) is a weak*-compact subset of
C(]0,1])*. Using Theorem 3.16 (page 70) in the book Walter Rudin, Functional Analysis AM ([0, 1])
is metrizable. Hence space of regular Borel probability measures on [0, 1], equipped with the weak*-
topology is a metrizable space. O

7. Let D = {z : |z| < 1} be the open unit disk. Let A(D) denote the space of analytic functions
on D with family of semi-norms, p,(a) = |a(z)| for z € D and a € D. Let F = {p € A(D) :
p is a polynomial of degree at most n}. Show that A(D) = FE@Y (direct sum) for some closed
subspace Y C A(D). Let P: A(D) — Y be the canonical projection. Show that P is not a compact
operator.

Solution: Since A(D) is locally convex topological vector space and dim F = n+1 < co. Using the
Lemma 4.21(a), page-106 from the book Walter Rudin, Functional Analysis, F' is complemented in
A(D). Therefore there exist a closed subspace Y C A(D) such that A(D)=F @Y.

Suppose P : A(D) — Y is compact, we have range of P is closed. Using the Thorem 4.18(b) in the
book Walter Rudin, Functional Analysis, thus dim range of P is finite. Which is a contradiction.
Therefore P is not a operator. O

8. Let X be a normed linear space. State and prove the Banach-Alaogu theorem.

Solution: We can find the Statement and proof in the book Walter Rudin, Functional Analysis,
Theorem 3.15, page-68.

O

9. Let T : 1% — 1% be defined by T({ay,}) = {22}. Show that T is a compact operator.



10.

Solution: Define Ty ({an}) = (a1, %, 5, ..., 0,0,0.....), since range of Ty is finite dimensional,

therefore Ty is a compact operator. For {a,} € I?,
1
’ 1
NStk ) < (s 2] it
noN n>N | T
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e
n>N

Ty ({and) = T({an)ll < sup |1

1
n

7w ({an}) — T({an])llz = (Z E
n>N

Therefore,

Since + — 0, it follows that ||Tx ({an}) — T({an})|]2 — 0. Since set of compact operators form a
closed subspace. Hence T is a compact operator.

]

Let T € L(X) be such that T* maps extreme points of the unit ball of X* to extreme points of the
unit ball of X*. Show that T is an extreme point of the unit ball of L(X).

Solution: Let x belongs to unit ball of X, We have

|| T|]

y*(Tx)||, where y* belongs to the unit ball of X*
y*(Tx)||,where y* belongs to the extreme point of the unit ball of X*
T (y*)(2)]] < 1.

Therefore ||T|] < 1.

Now we prove that T is an extreme point. Let T = A\T7 + (1 — A)T5, where 0 < A < 1, T7 and
T5 belongs to the unit ball of L(X). Let y* belong to the extreme point of the unit ball of X*,
y*(T) = Ay*(Th) + (1 = Ny*(T2), T*(v*) = ATy (y*) + (1 = N)T5(y*). Since T* maps extreme points
of the unit ball of X* to the extreme points of the unit ball of X* we have,

T*(y") =17 (y") =15 (y").

The above equation is true for every element in the unit ball of X*, therefore for every element of
X*. Hence y*(T) = y*(Th) = y*(T3) for every y* € X*. This implies that T' =T} = T.

O



